37 research outputs found

    Highly Scalable Multiplication for Distributed Sparse Multivariate Polynomials on Many-core Systems

    Full text link
    We present a highly scalable algorithm for multiplying sparse multivariate polynomials represented in a distributed format. This algo- rithm targets not only the shared memory multicore computers, but also computers clusters or specialized hardware attached to a host computer, such as graphics processing units or many-core coprocessors. The scal- ability on the large number of cores is ensured by the lacks of synchro- nizations, locks and false-sharing during the main parallel step.Comment: 15 pages, 5 figure

    Opening practice: Supporting Reproducibility and Critical Spatial Data Science

    Get PDF
    This paper reflects on a number of trends towards a more open and reproducible approach to geographic and spatial data science over recent years. In particular, it considers trends towards Big Data, and the impacts this is having on spatial data analysis and modelling. It identifies a turn in academia towards coding as a core analytic tool, and away from proprietary software tools offering ‘black boxes’ where the internal workings of the analysis are not revealed. It is argued that this closed form software is problematic and considers a number of ways in which issues identified in spatial data analysis (such as the MAUP) could be overlooked when working with closed tools, leading to problems of interpretation and possibly inappropriate actions and policies based on these. In addition, this paper considers the role that reproducible and open spatial science may play in such an approach, taking into account the issues raised. It highlights the dangers of failing to account for the geographical properties of data, now that all data are spatial (they are collected somewhere), the problems of a desire for n = all observations in data science and it identifies the need for a critical approach. This is one in which openness, transparency, sharing and reproducibility provide a mantra for defensible and robust spatial data science

    Comparing the speed of programs for sparse polynomial multiplication

    No full text

    MACSYMA

    No full text

    Reply to an editorial

    No full text

    Symbolic computation of divided differences

    No full text

    Speed and data structures in computer algebra systems

    No full text

    Solution to problem #7 using MACSYMA

    No full text
    corecore